2016-07-01
Silencing of Antichondrogenic MicroRNA-221 in Human Mesenchymal Stem Cells Promotes Cartilage Repair In Vivo
Publication
Publication
Stem Cells: the international journal of cell differentiation and proliferation , Volume 34 - Issue 7 p. 1801- 1811
There is a growing demand for the development of experimental strategies for efficient articular cartilage repair. Current tissue engineering-based regenerative strategies make use of human mesenchymal stromal cells (hMSCs). However, when implanted in a cartilage defect, control of hMSCs differentiation toward the chondrogenic lineage remains a significant challenge. We have recently demonstrated that silencing the antichondrogenic regulator microRNA-221 (miR-221) was highly effective in promoting in vitro chondrogenesis of monolayered hMSCs in the absence of the chondrogenic induction factor TGF-β. Here we investigated the feasibility of this approach first in conventional 3D pellet culture and then in an in vivo model. In pellet cultures, we observed that miR-221 silencing was sufficient to drive hMSCs toward chondrogenic differentiation in the absence of TGF-β. In vivo, the potential of miR-221 silenced hMSCs was investigated by first encapsulating the cells in alginate and then by filling a cartilage defect in an osteochondral biopsy. After implanting the biopsy subcutaneously in nude mice, we found that silencing of miR-221 strongly enhanced in vivo cartilage repair compared to the control conditions (untreated hMSCs or alginate-only). Notably, miR-221 silenced hMSCs generated in vivo a cartilaginous tissue with no sign of collagen type X deposition, a marker of undesired hypertrophic maturation. Altogether our data indicate that silencing miR-221 has a prochondrogenic role in vivo, opening new possibilities for the use of hMSCs in cartilage tissue engineering. Stem Cells 2016;34:1801–1811.
| Additional Metadata | |
|---|---|
| , , , , | |
| doi.org/10.1002/stem.2350, hdl.handle.net/1765/97477 | |
| Stem Cells: the international journal of cell differentiation and proliferation | |
| Organisation | Department of Orthopaedics |
|
Lolli, A., Narcisi, R., Lambertini, E. (Elisabetta), Penolazzi, L. (Letizia), Angelozzi, M. (Marco), Kops, N., … Piva, R. (Roberta). (2016). Silencing of Antichondrogenic MicroRNA-221 in Human Mesenchymal Stem Cells Promotes Cartilage Repair In Vivo. Stem Cells: the international journal of cell differentiation and proliferation, 34(7), 1801–1811. doi:10.1002/stem.2350 |
|