The development and full validation of a sensitive and selective ultra-performance liquid chromatography/ tandem mass spectrometry (UPLC–MS/MS) method are described for the simultaneous analysis of afatinib, alectinib, crizotinib and osimertinib in human lithium heparinized plasma. Afatinib-d6, crizotinib-d5 and erlotinib-d6 were used as internal standards. Given osimertinib's instability in plasma and whole blood at ambient temperature, samples should be solely processed on ice (T = 0 °C). Chromatographic separation was obtained on an Acquity UPLC ® BEH C18; 2.1 × 50 mm, 1.7 μm column, which was eluted with 0.400 mL/minute flow on a linear gradient, consisting of 10 mM ammonium formate (pH 4.5) and acetonitrile. Calibration curves for all compounds were linear for concentration ranges of 1.00 to 100 ng/mL for afatinib and 10.0 to 1000 ng/mL for alectinib, crizotinib and osimertinib, herewith validating the lower limits of quantification at 1.00 ng/mL for afatinib and 10.0 ng/mL for alectinib, crizotinib and osimertinib. Within-run and between-run precision measurements fell within 10.2%, with accuracy ranging from 89.2 to 110%.

, , , , , ,
doi.org/10.1016/j.jchromb.2019.03.011, hdl.handle.net/1765/116328
VSNU Open Access deal
Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences
Department of Medical Oncology

Veerman, GDM, Lam, M., Mathijssen, R., Koolen, S., & de Bruijn, P. (2019). Quantification of afatinib, alectinib, crizotinib and osimertinib in human plasma by liquid chromatography/triple-quadrupole mass spectrometry; focusing on the stability of osimertinib. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences, 1113, 37–44. doi:10.1016/j.jchromb.2019.03.011