The flexibility of neural networks to handle complex data patterns of economic variables is well known. In this survey we present a brief introduction to a neural network and focus on two aspects of its flexibility . First, a neural network is used to recover the dynamic properties of a nonlinear system, in particular, its stability by making use of the Lyapunov exponent. Second, a two-stage network is introduced where the usual nonlinear model is combined with time transitions, which may be handled by neural networks. The connection with time-varying smooth transition models is indicated. The procedures are illustrated using three examples: a structurally unstable chaotic model, nonlinear trends in real exchange rates and a time-varying Phillips curve using US data from 1960-1997.

, , ,
hdl.handle.net/1765/1661
Econometric Institute Research Papers
Erasmus School of Economics

Kaashoek, J., & van Dijk, H. (2000). Neural networks as econometric tool (No. EI 2000-31/A). Econometric Institute Research Papers. Retrieved from http://hdl.handle.net/1765/1661