In this article, we demonstrate that a direct relation exists between the context of Japanese firms indicating relative distress and conditional return distribution properties. We map cross-sectional vectors with company characteristics on vectors with return feature vectors, using a fuzzy identification technique called Competitive Exception Learning Algorithm (CELA)1. In this study we use company characteristics that follow from capital structure theory and we relate the recognized conditional return properties to this theory. Using the rules identified by this mapping procedure this approach enables us to make conditional predictions regarding the probability of a stock's or a group of stocks' return series for different return distribution classes (actually return indices). Using these findings, one may construct conditional indices that may serve as benchmarks. These would be particularly useful for tracking and portfolio management.

, , , ,
, ,
Erasmus Research Institute of Management
ERIM Report Series Research in Management
Erasmus Research Institute of Management

van den Bergh, W.-M, Steenbeek, O.W, & van den Berg, J.H. (2002). Relative Distress and Return Distribution Characteristics of Japanese Stocks, a Fuzzy-Probabilistic Approach (No. ERS-2002-29-F&A). ERIM Report Series Research in Management. Erasmus Research Institute of Management. Retrieved from